Applied Math Colloquium

Monday, October 22, 2018 at 4:15pm to 5:15pm

2-190

Kasso Okoudjou (MIT/U. of Maryland)

Title: Bases of time-frequency shifts and the uncertainty principle

Abstract: The Balian-Low Theorem (BLT) is an uncertainty principle-type result that precludes the existence of a Gabor orthonormal basis (ONB) of the form   $\{e^{2\pi i kx/a }g(x-an) \}_{k, n=-\infty}^{\infty},$  where $a>0$, and $g$ is well-localized in phase space.  A related ONB  with a well-localized generator (hence does not obey the BLT)  was numerically introduced by K. Wilson in the 80s, and formalized by Daubechies, Jaffard, and Journ\'e. The latter system is called a Wilson basis and was recently featured  in the detection of the gravitational waves.

In the first part of the talk, I will review some basic structures as well as the relationship between these two systems. I will then  present some recent and ongoing work on constructing Wilson-type systems from more general Gabor families.  (This is a joint work with D. Bhimani, M. Bownik, M. Jakobsen, and J. Lemvig).

Event Type

Conferences/Seminars/Lectures

Events By Interest

Academic

Events By School

School of Science

Department
Department of Mathematics
Add to my calendar

Recent Activity