Geometric Analysis Seminar

Wednesday, March 04, 2020 at 4:00pm to 6:00pm

Building 2, 2-131
182 MEMORIAL DR, Cambridge, MA 02139

Featured Speaker: Felix Schulze (University of Chicago and University of Warwick)

Title: On the regularity of Ricci flows coming out of metric spaces

Abstract: We consider smooth, not necessarily complete, Ricci flows, (M,g(t))_{t \in (0,T)} with Ric(g(t))\geq−1 and |Rm(g(t))|\leq c/t for all t\in(0,T) coming out of metric spaces (M,d_0) in the sense that (M,d(g(t)),x_0)->(M,d_0,x_0) as t->0 in the pointed Gromov-Hausdorff sense. In the case that B_{g(t)}(x_0,1)\Subset M for all t \in (0,T) and d_0 is generated by a smooth Riemannian metric in distance coordinates, we show using Ricci-harmonic map heat flow, that there is a corresponding smooth solution \tilde{g}(t)_{t\in (0,T)} to the \delta-Ricci-DeTurck flow on an Euclidean ball B_r(p_0)\subset R^n, which can be extended to a smooth solution defined for t\in [0,T). We further show, that this implies that the original solution g can be extended to a smooth solution on B_{d_0}(x_0,r/2) for t \in [0,T), in view of the method of Hamilton. This is joint work with Alix Deruelle and Miles Simon.

Event Type


Events By Interest


Events By Audience


Events By School

School of Science

Department of Mathematics
Contact Email

Add to my calendar

Recent Activity