Geometry and Topology Seminar

Monday, October 15, 2018 at 3:00pm to 4:00pm


Yi Xie (Stony Brook)

Title: Instantons and annular Khovanov homology

Abstract: The annular Khovanov homology is an invariant for links in a thickened annulus, which generalizes the original Khovanov homology defined for links in a three-sphere. It is a special case of the theory developed by Asaeda, Przytycki and Sikora which works for links in any thickened surface. In this talk, I will introduce an analogue of the annular Khovanov homology using singular instanton Floer theory, called the annular instanton Floer homology.  It is related to the annular Khovanov homology by a spectral sequence. As an application of this spectral sequence, I will prove that the annular Khovanov homology detects the unlink in the thickened annulus (assuming all the components are null-homologous). Another application is a new proof of Grigsby and Ni’s result that tangle Khovanov homology distinguishes braids from other tangles.

Event Type


Events By Interest


Events By School

School of Science

Department of Mathematics
Add to my calendar

Recent Activity