Devices and Algorithms for Analog Deep Learning

Wednesday, September 14, 2022 at 12:00pm to 1:00pm

Grier Room, 34-401A

Abstract: Analog deep-learning processors can provide orders of magnitude higher processing speed and energy efficiency compared to traditional digital counterparts. This is imperative for the promise of artificial intelligence to be realized. However, the implementation of analog processors faces a significant barrier comprising two coupled components: 1) the absence of devices that satisfy stringent algorithm-imposed demands and 2) algorithms that can tolerate inevitable device nonidealities. This talk will present major advancements along both directions: a novel near-ideal device technology and a superior neural network training algorithm. The devices first realized here are CMOS-compatible nanoscale protonic programmable resistors that incorporate the benefits of nanoionics with extreme acceleration of ion transport under strong electric fields. Enabled by a material-level breakthrough of utilizing phosphosilicate glass (PSG) as a proton electrolyte, these devices achieve controlled proton intercalation in nanoseconds with high energy-efficiency. Separately, a theoretical analysis explains the infamous incompatibility between asymmetric device modulation and conventional neural network training algorithms. By establishing a powerful analogy with classical mechanics, a novel method, Stochastic Hamiltonian Descent, has been developed to exploit device asymmetry as a useful feature instead. In combination, the two developments presented in this thesis can be effective in ultimately realizing the potential of analog deep learning.

Bio: Murat Onen is a Postdoctoral Researcher at Massachusetts Institute of Technology (MIT). He holds a PhD degree in Electrical Engineering and Computer Science from MIT. His research focuses on devices, architectures, and algorithms for analog deep learning which has led to 16 patents and numerous publications to date. Currently, he focuses on developing nanoprotonic programmable resistors and specialized training algorithms for analog crossbar accelerators.

Event Type


Events By Interest

Academic, General

Events By Audience

MIT Community, Students, Alumni, Faculty, Staff

Events By School

School of Engineering (SoE)


engineering, MTL


Microsystems Technology Laboratories
Contact Email

Add to my calendar

Recent Activity