Mildred S. Dresselhaus Lecture: Evolving organisms to grow new nanomaterials for energy, the environment, and medicine

Monday, November 20, 2023 at 4:00pm to 6:00pm

Huntington Hall (10-250)

MIT.nano is thrilled to announce the 2023 Dresselhaus Lecturer!

Angela Belcher, PhD
James Mason Crafts Professor of Biological Engineering, Materials Science, and the Koch Institute for Integrative Cancer Research
Massachusetts Institute of Technology

Monday, November 20, 2023
MIT Building 10, Room 250
4:00 PM – 5:00 PM ET
Reception to follow at MIT.nano

Evolving organisms to grow new nanomaterials for energy, the environment, and medicine

Organisms have been making exquisite inorganic materials for over 500 million years. Although these materials have many desired physical properties such as strength, regularity, and environmentally benign processing, the types of materials that organisms have evolved to work with are limited. However, there are many properties of living systems that could be potentially harnessed by researchers to make advanced technologies that are smarter, more adaptable, and that are synthesized to be compatible with the environment.

One approach to designing future technologies that have some of the properties that living organisms use so well is to evolve organisms to work with a more diverse set of building blocks. The goal is to have a DNA sequence that codes for the synthesis and assembly of any inorganic material or device.

We have been successful in using evolutionarily selected peptides to control physical properties of nanocrystals and subsequently use molecular recognition and self-assembly to design biological hybrid multidimensional materials. These materials could be designed to address many scientific and technological problems in electronics, environmental remediation, medicine, and energy applications. Currently we are using this technology to design new methods for building batteries, fuel cells, solar cells, carbon sequestration and storage, environmental remediation, catalysis, and medical diagnostics and imaging.

This talk will address conditions under which organisms first evolved to make materials and scientific approaches to move beyond naturally evolved materials to genetically imprint advanced technologies with examples in lithium and sodium ion batteries, lithium-air batteries, environmental clean-up, and ovarian cancer imaging and treatment.


Angela Belcher is a biological and materials engineer with expertise in the fields of biomaterials, biomolecular materials, organic-inorganic interfaces, and solid-state chemistry and devices. Her primary research focus is evolving new materials for energy, electronics, the environment, and medicine.

Belcher received her B.S. in creative studies from The University of California, Santa Barbara (UCSB). She earned a Ph.D. in inorganic chemistry at UCSB. Following with her postdoctoral research in electrical engineering at UCSB. She now holds the James Mason Crafts Professor of Biological Engineering and Materials Engineering at MIT. She is faculty in the Department of Biological Engineering, Materials Science and Engineering, and the Koch Institute of Integrative Cancer Research. She teaches undergraduate subjects in material sciences and engineering and biological engineering.

In 2002, Belcher founded the company Cambrios Technologies, Inc., and in 2007 she founded Siluria Technologies, Inc. Some recent awards include the Lemelson-MIT Prize for her inventions, and Eni Prize for Renewable and Non-Conventional Energy. In 2009, Rolling Stone Magazine listed her as one of the top 100 people changing the country. In 2007, Time Magazine named her a “Hero” for her research related to climate change. She received the Four Star General Recognition Award (US Army) for significant contribution to army transformation. In 2000, she was awarded the Presidential Early Career Award in Science and Engineering (PECASE). She was named Research Leader of the Year by Scientific American, and is a MacArthur Fellow, a Packard Fellow, an Alfred P. Sloan Fellow, a Bose Fellow, a member of American Academy of Arts and Sciences, a member of the National Academy of Inventors, a member of the National Academy of Engineering and a member of the National Academy of Sciences.


The Dresselhaus Lecture series is named in honor of Mildred "Millie" Dresselhaus, a beloved MIT professor whose research helped unlock the mysteries of carbon, the most fundamental of organic elements—earning her the nickname “queen of carbon science.” This annual event recognizes a significant figure in science and engineering from anywhere in the world whose leadership and impact echo Millie’s life, accomplishments, and values.

Event Type


Events By Interest


Events By Audience

Public, MIT Community, Students, Alumni, Faculty, Staff

Events By School

School of Engineering (SoE), School of Science, Schwarzman College of Computing


research, engineering, technology, science, Energy, Medicine, chemistry, electronics, nanotechnology, biological engineering, materials science, Nanoscience, nanoscale, biomaterials, nanomaterials


Contact Email

Add to my calendar

Recent Activity

You're not going yet!

This event requires registration.