BEGIN:VCALENDAR
VERSION:2.0
CALSCALE:GREGORIAN
PRODID:iCalendar-Ruby
BEGIN:VEVENT
CATEGORIES:Conferences/Seminars/Lectures
DESCRIPTION:Speaker: Weihong Xu (Virginia Tech.)\n\nTitle: Quantum k-th
eory of Incidence Varieties\n\nAbstract: \n\nBuch\, Mihalcea\, Chaput\, and
Perrin proved that for cominuscule flag varieties\, (T-equivariant) K-theo
retic (3-pointed\, genus 0) Gromov-Witten invariants can be computed in the
(equivariant) ordinary K-theory ring\, where combinatorial formulas are av
ailable. Buch and Mihalcea have a related conjecture for all type A flag va
rieties. In this talk\, I will discuss work that proves this conjecture in
the first non-cominuscule case--the incidence variety X=Fl(1\,n-1\;n). As a
pplications\, I will discuss positive combinatorial formulas (an equivarian
t Chevalley formula and a non-equivariant Littlewood-Richardson rule) which
determine the (equivariant) quantum K-theory ring of X. The Littlewood-Ric
hardson rule implies that non-empty Gromov-Witten varieties of stable maps
to X with markings sent to three Schubert varieties in general position hav
e arithmetic genus 0. The talk is based on the arxiv preprint at https://ar
xiv.org/abs/2112.13036.
DTEND:20221005T211500Z
DTSTAMP:20230322T084848Z
DTSTART:20221005T201500Z
LOCATION:MIT - Math Dept.\, /Room 2-132
SEQUENCE:0
SUMMARY:MIT-Harvard-MSR Combinatorics Seminar
UID:tag:localist.com\,2008:EventInstance_41190790725419
URL:https://calendar.mit.edu/event/mit-harvard-msr_combinatorics_seminar_99
26
END:VEVENT
END:VCALENDAR